

Research Experience for Undergraduates

Phase-Field Simulations: Anisotropic Misfit Strain Phase Diagram of K_{0.5}Na_{0.5}NbO₃ Thin Films

Adriana Ladera¹, Bo Wang², Jian-Jun Wang², Long-Qing Chen² ¹Department of Computer Science and Engineering, University of South Florida; ²Department of Materials Science and Engineering, Penn State University

Why is this important?

Piezoelectric materials are useful for their ability to convert mechanical deformations into electrical charge. One of the most popular piezoelectric materials

Source: Chirp Microsystems *Fig.* 1 Micro-electromechanical system (MEMS)-based ultrasonic sensor

is lead zirconate titanate sitting atop a person's fingertip. (PZT), however, more demand has pushed for the study of environmentally-friendly lead-free materials such as $K_{0.5}Na_{0.5}NbO_3$ (KNN). This particular study concentrates on the domain structures of KNN thin films under various anisotropic strains, and the present work can prove useful in developing nanodevices with enhanced piezoelectric effects.

Background Theory and Methods

Na K K K	$\frac{\partial P_i(x,t)}{\partial t} = \\ Fig. \ 2 \\ f KNN (left) and Ginzle \\ equation (right). \end{cases}$	$= -L rac{\delta F}{\delta P_i(x,t)}$ burg-Landau (TGDL)
Film Substrate	Film Substrate Tensile Strain Fia. 3	
Diagram depicting strain of thin films on a substrate (left) and sample		

domain structure using phase-field simulations (right).

The 2019 Interdisciplinary Materials and Physics

Anisotropic misfit strain phase diagram of KNN thin films produced using phase-field methods.

² Zorn, J. μ -*Thermo*; Pennsylvania State University: State College (2019). ³ M. Schmidbauer, D. Braun, T. Markurt, M. Hanke, J. Schwarzkopf, Nanotechnology 28 24LT02 (2017).